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Pesticides are high-volume, widely used, environmental chemicals and there is continuous
debate concerning their possible role in many chronic human health effects. Because of their
known structures, known rates of application, and the presence of a large occupationally exposed
population, they are not only important in their own right but are ideal models for the effects of
environmental chemicals on the population in general. For reasons that are not always clear, this
potential has not been realized. These exposed populations represent an underused asset in the
study of the human health effects of environmental contaminants. Chronic effects thought to
involve pesticides include carcinogenesis, neurotoxicity, and reproductive and development
effects. In this paper we attempt to summarize this concern and, relying to a large extent on stud-
ies in our own laboratory, to indicate the importance and present status of studies of the mam-

malian metabolism of pesticides and indicate the need for further use of this model. Aspects
considered include the role of pesticides as substrates for xenobiotic-metabolizing enzymes such
as cytochrome P450 and the flavin-containing monooxygenase and their role as inducers or
inhibitors of metabolic enzymes. The interaction of pesticides with complex multienzyme path-
ways, the role of biological characteristics, particularly gender, in pesticide metabolism, and the
special role of pesticides at portals of entry and in target tissues are also considered. Environ
Health Perspect 1 04(Suppl 1):97-106 (1996)
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Introduction

As a consequence of forces acting in differ-
ent directions, it is difficult to foresee the
changes that will take place in pesticide
toxicology as they relate not only to human
health but also to the environment. Since
few efforts are now being made to moder-
ate either national or world population
growth, demands for food and fiber must
increase, bringing into use marginal land
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and marginal climatic zones. At the same
time compounds useful in the production
of food and fiber are lost both to pest resis-
tance and to regulatory action. While the
cost of developing new pesticides has dra-
matically increased, which limits such
development to a small number of compa-
nies, new compounds are appearing along
with questions concerning their potential
for human and environmental risk.
Integrated pest management, when suc-
cessful, can limit the amounts of pesticides
needed, but in the foreseeable future, it is
unlikely to do more than slow the rate of
increase in the use of these chemicals.

It is clear that pesticide toxicology is of
importance in its own right, involving
numerous chemicals designed to be toxic
to one or more living organisms and
released intentionally into the environ-
ment. At the same time, their role as model
compounds for environmental chemicals in
general should not be forgotten. Unlike
many environmental chemicals such as

combustion products, industrial waste,
etc., the chemical structures of pesticides
are known and they are released intention-
ally in amounts that are either known or
can be determined. Furthermore, pesticide
manufacturing workers, formulators, appli-
cators, and agricultural workers and their
families constitute a body of individuals
exposed to relatively high concentrations of
pesticides. Since these individuals are
exposed in the course of normal, usually
legal, use of pesticides, the ethical problems
involved in administration of chemicals to
human study groups are avoided. Studies
of these groups should be an essential pre-
liminary to consideration of the risk to the
general population of the much smaller
concentrations of pesticides to which they
are exposed.

Despite these needs and advantages,
pesticides remain relatively unexplored
either as important potential toxicants in
their own right or as models for environ-
mental toxicants in general. Investigators in
the biochemical and molecular aspects of
environmental toxicology frequently use
model compounds that are either clinical
drugs with little if any environmental
significance or convenient chemicals, again
with little or no environmental signifi-
cance. In any case it remains true that in
even in metabolic studies in experimental
animals the isozyme specificity for pesti-
cides, whether they are acting as substrates,
inhibitors, or inducers, is largely unknown.
Further, in only a vanishingly small num-
ber of cases has the role of human isozymes
in pesticide metabolism been examined.
The remainder of this communication is
devoted to highlighting several aspects of
the current state of knowledge of the inter-
action of pesticides with living organisms,
primarily at the biochemical and molecular
levels. Since space considerations preclude
a detailed review of the subject, consider-
able emphasis is on the contributions of
the authors and their associates in the area
of molecular and biochemical interactions
of pesticides. Knowledge of such interac-
tions is essential for understanding mecha-
nisms of toxicity and development of
realistic risk assessment models.

Pesticides (1-5) are metabolized by
many enzymes, including the cytochrome
P450-dependent monooxygenase system
(P450), the flavin-containing monooxyge-
nase (FMO), prostaglandin synthetase,
molybdenum hydroxylases, alcohol and
aldehyde dehyrogenases, esterases, and a
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variety of transferases, most notably the
glutathione S-transferases. Involved in
what is usually the initial metabolic attack
on the pesticide, P450 appears to be the
most important, followed by the FMO.
Depending upon the pesticide substrate,
examples of both activation and detoxica-
tion can be found with any of these
enzymes; however, P450 isozymes have
added importance as activation enzymes,
producing reactive electrophiles that inter-
act with nucleophilic substituents on
macromolecules such as proteins and
nucleic acids. Pesticides serve not only as
substrates for these enzymes but, particu-
larly in the case of P450, may serve also as
inhibitors or inducers. These multiple roles
are illustrated by studies on such pesticides
as the methylenedioxyphenyl synergists,
organophosphates, organochlorines, and
herbicide synergists (5-8).

Over 400 P450 genes have been char-
acterized and their nucleotides and derived
amino acid sequences compared. In a num-
ber of cases, the genes have been mapped
to specific chromosome loci and in others
the mechanism of expression has been
investigated. A system of nomenclature
based on derived amino acid sequences was
proposed in 1987 and updated in 1989,
1991, and 1993. P450 genes are designated
CYP (the protein products may still be des-
ignated P450) followed by a numbering
system that distinguishes gene families,
gene subfamilies, and individual genes.
This system has enabled an evolutionary
tree for P450s to be developed (9). While
some P450s are substrate specific, those
involved in xenobiotic metabolism tend to
be relatively nonspecific, although, even in
the latter, substrate preferences are usually
evident. Isozyme specificities also exist for
inhibitors and inducers of P450 isozymes.

FMOs, like P450s, are located in the
endoplasmic reticulum of vertebrate cells
and are involved in the monooxygenation
of pesticides. Originally described as an
amine oxidase (10), FMOs are now known
to catalyze the oxidation of many organic,
and some inorganic, chemicals (11,12).
They are particularly important in the oxi-
dation of heteroatoms, particularly nitro-
gen, sulfur, phosphorus, and selenium in
organic molecules.

Pesticides as
Human Health Hazards
Acute

Toxic outbreaks or collective poisonings
have resulted from misuse of almost every

type of pesticide: organochlorine insecti-
cides such as DDT, lindane, and chlorde-
cone; chlorinated camphenes such as
toxaphene; the cyclodienes aldrin and
dieldrin; organophosphate and carbamate
cholinesterase inhibitors; organomercury
fungicides; inorganics; and others. Such
collective outbreaks may be defined as the
effect, in an exposure incident, of a chemi-
cal or group of chemicals on a population
in which several to many individuals are
poisoned. Collective toxic outbreaks
related to pesticides have recently been the
subject of a comprehensive review (13).
They may occur in the general population
from oral or cutaneous exposure or they
may be occupational in nature, involving
workers in manufacturing or formulators,
mixers, or applicators in agriculture and
public health. While it is clear that
such incidents can occur in any country,
in recent years they have become less
common in developed countries than in
developing countries. Emergency response
time and therapy also tend to be shorter
and more effective, respectively, in more
developed countries, so that it might be
expected that this trend will continue.

While reliable statistics on individual
poisonings by pesticides are more difficult
to obtain, it appears that again the same
trend toward a less serious situation in
developed countries is occuring. It is inter-
esting to note that many pesticide-related
deaths seem to involve suicide. At the same
time there is concern (14) that there may
be serious sequelae following apparent
recovery after treatment from an acute
poisoning episode, particularly in the
case of organophosphate poisoning or
chronic, noncholinergic effects from the
same compounds.

Chronic
Recently, public concern over potential
adverse health effects has focused on a
number of chronic end points-carcino-
genesis, developmental and reproductive
effects, immunological effects, and neuro-
toxicity. Moreover, the mechanisms by
which environmental chemicals, not only
pesticides, can contribute to these chronic
events are still largely unknown. Thus, ade-
quate test protocols are still generally
unavailable or not yet in use.

It is seems apparent, by extrapolation
from hazard assessment studies conducted
primarily in rodents, that pesticides have
the potential to produce toxicity in
humans, a potential that includes many
different toxic end points [see Baker and

Wilkinson (15), for a summary]. While
this potential almost certainly occurs in the
occupational setting, it is more difficult
to confirm for the general population,
exposed primarily through the diet (food
and drinking water). Epidemiology studies
almost always involve occupational expo-
sures and, even then, are complicated by
multiple sequential exposures. Extrapola-
tion from rodent assays to the levels in
food and drinking water, often at or about
the limit of detection, is the broadest possi-
ble extrapolation and thus the most subject
to error. It is important that future studies
properly define the chronic toxicity of low
doses of pesticides to the human popula-
tion. Moreover, given the generally low
incidence of toxic effects, direct evidence of
toxic mechanism or, at least, a plausible
explanation based on mechanistic toxicol-
ogy will be necessary. The consequences
from positive correlations are serious and
regulation will be necessary, while the con-
sequences from negative correlations could
save society from needless cost or panic-
induced regulations.

Carcinogenesis. In recent years, there
has been an increse in public concern that
chronic low-level exposure to pesticide
residues in food and water might pose a
serious cancer risk to the general popula-
tion. While epidemiological studies have
often implicated pesticides as causative
agents in human cancer (16-20), it has
usually been at a marginal level of signi-
ficance. In the past, both experimentalists
and epidemiologists have generally thought
of chemical carcinogens as electrophiles
and mutagens which act as initiating agents
through genotoxic mechanisms. Today,
however, we realize that chemicals can play
a role in the cancer process by a number of
nongenotoxic mechanisms such as promo-
tion, peroxisome proliferation, hormone
imbalance, and cytotoxicity leading to
compensatory cell division (mitogenic
agents). It is likely that many pesticides,
classified as animal carcinogens, are acting
through one of these mechansims. For
example, it is suspected that 1,1,1-
trichloro-2,2-bis(p-chlorophenyl)ethane
(DDT) and its breakdown product 1,1,1-
trichloro-2,2-bis(p-chlorophenyl)ethylene
(DDE), still persistent in the environment
long after being banned, may be involved
in the causation of breast cancer as a result
of estrogenic activity (21-25). Again, it is
essential that this issue be resolved. The
marginal levels of significance in most epi-
demiological studies of pesticides has led to
a general suspicion that pesticides may
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often be promotors, rather than initiators,
of cancer. That this is possible is clear from
the mechanistic studies by Smart and his
group (26-29) into the tumor-promoting
effects of mirex. Not only is mirex a potent
tumor promotor in the mouse skin model,
but it has a mechanism of action different
from that in classic promoters, such as the
phorbol ester, TPA. Studies are ongoing to
define this novel mechanism that may be
applicable, not only to pesticides, but to
other environmental contaminants as well.

Neurotoxicity. Because of the basic
similarities between mammalian and insect
nervous systems, insecticides designed to
attack the insect nervous system (organo-
chlorines, organophosphates, and carba-
mates) are capable of producing acute and
chronic neurotoxic effects in mammals
(14,30,31). In fact, both acute and chronic
alterations in sensory, motor, autonomic,
cognitive, and behavioral functions have
been observed in people exposed occupa-
tionally to relatively high levels of insecti-
cides and other pesticides. While workers
exposed occupationally to pesticides consti-
tute an extremely large workforce world-
wide, they have received little attention
with respect to the possible occurrence of
adverse neurological effects. If neurotoxic
effects are not readily observed in this
population, it is unlikely that they would
be detected in the general population
where pesticide exposure is only at trace
levels. While our knowledge of acute neu-
rotoxic effects of pesticides and other envi-
ronmental chemicals is fairly extensive, our
current understanding of chronic effects is
considerably less extensive. To rigorously
evaluate chronic neurotoxic effects, we
need more sound epidemiological and
experimental data.

Reproductive Effects. A number of
pesticides clearly have the potential to
cause reproductive toxicity in animals,
and several (e.g., dibromochloropropane
[DBCP], ethylene dibromide [EDB],
chlordecone [Kepone], and carbaryl) are
known to affect human reproduction
(32-37). Reproductive toxicants have the
potential to cause adverse effects by one of
several mechanisms. Some are direct-acting
agents, either through their chemical reac-
tivity (e.g., germ cell destruction by ioniz-
ing radiation) or by structural similarity to
endogenous molecules (e.g., hormone ago-
nists or antagonists). Other xenobiotics can
interrupt reproduction indirectly either by
metabolism to a direct-acting toxicant or
by altering the endocrine system (e.g.,
increased steroid clearance).

One important mechanism of action of
reproductive toxicants results from struc-
tural similarlty of the parent compound or
a metabolite to an important biological
molecule such as a hormone. Xenobiotics
in this category then act as agonists or
antagonists of the endogenous hormones.
Since the early 1970s, it has been known
that fetal exposure to DDT causes male
animals to develop abnormally small
penises and undescended testicles. For
many years these effects were thought to
resuk from the estrogenic action of DDT.
Recent studies (38), however, demonstrate
that the primary DDT metabolite p,p'-
DDE, interferes with the action of male
sex hormones, or androgens, suggesting
that the feminizing action ofDDT resulted
from the antiandrogenic action of the
DDT metabolite. Has exposure to DDT
and other hormonally active pesticides
played a significant role in the reported
increased incidence of male reproductive
abnormalities in humans, such as the the
reported decline in sperm counts and the
rise in testicular cancer? Clearly this awaits
further investigation.

Developmental Effects. Traditionally,
mammalian developmental toxicity has
referred to adverse effects initiated or evi-
dent during in utero development. More
broadly, however, developmental toxicity
also includes adverse effects on the devel-
oping organism that may have resulted
from exposure of either parent before con-
ception, of the mother during prenatal
development, or postnatally to the time of
sexual maturation. Development is an
exceedingly complex process and the sensi-
tivity of the conceptus to chemicals, as well
as the type of abnormality expressed, varies
with the developmental stage at which
exposure occurs. The embryo is most vul-
nerable to the initiation of major birth
defects between 3 weeks and 2 months of
gestation, the critical period of organogen-
esis. Exposure to toxic chemicals during
the first 2 weeks typically leads to fetal
death, while exposure after organogenesis is
more likely to cause growth retardation
and functional deficits.

Data currently available are inadequate
to make a meaningful estimate of the
degree to which pesticide exposure may be
involved in human developmental prob-
lems. Animal data clearly indicate that the
potential is there, provided exposure occurs
during sensitive time points and at suffi-
cient concentrations. Of particular current
concern is exposure to hormonally active
chemicals, including pesticides. In humans

and rodents, exposure to hormonally active
chemicals during the period of sex differ-
entiation can produce a wide range of
abnormal sexual phenotypes including
masculinized and defeminized females and
feminized and demasculinized males.
Xenobiotics known to act in this capacity
have been referred to as environmental
estrogens or environmental androgens. As
mentioned in the discussion above on
reproductive effects, compounds structur-
ally similar to hormones may act either as
receptor agonists or antagonists. Pesticides
possessing hormonal activity and having
the ability to interfere with mammalian sex
differentiation include methoxychlor
(39,40), DDT (38), and vinclozin (41).
The Significance of
Pesticide Metabolism
Pesticides as Substrates
P450 carries out many different monooxy-
genations of pesticide substrates, such as
epoxidation (e.g., aldrin), N-dealkylation
(e.g., atrazine), O-dealkylation (e.g., chlor-
fenvinphos), S-oxidation (e.g., phorate),
and oxidative desulfuration (e.g., para-
thion) (8). Substrates for the FMO are
similarly diverse but all are soft nucleo-
philes, a category that includes many
organic chemicals with sulfur, nitrogen,
phosphorus, or selenium heteroatoms.
Although xenobiotic-metabolizing iso-
zymes of P450 appear to prefer hard
nucleophiles as substrates, there is consid-
erable overlap and most, if not all, sub-
strates for FMO are also substrates for
P450. The reverse, however, is not true
since oxidations at carbon atoms are readily
catalyzed by P450 but rarely, if at all, by
FMO. However, even when the same
substrate is oxidized by both FMO and
P450, there may be differences in the rate
of oxidation, in the products, or in the
stereochemistry of the same product. The
concentration of various isoforms of both
FMO and P450 varies from tissue to
tissue. Pesticide substrates for the FMO
include organophosphates such as phorate
and disulfoton, which yield sulfoxides; the
phosphonate fonofos, which yields fonofos
oxon; carbamates such as aldicarb and
methiocarb; dithiocarbamate herbicides
such as sodium metham; botanical insecti-
cides such as nicotine; and cotton defoliants
such as the trivalent organophosphorus
compound folex (42-45).

Very little information on the contri-
bution of individual isozymes of either
P450 or FMO to pesticide oxidations is
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available. Early studies in this laboratory
using partially purified P450 enzyme
preparations from uninduced mouse liver
showed considerable variation in oxidation
of pesticide substrates (46) and in interac-
tions (spectral binding and inhibition
of activity) with the pesticide synergist
piperonyl butoxide (47).

Later studies (48) using highly purified
P450s from phenobarbital-induced mouse
livers (CYP2B) and from f-naphthoflavone-
induced mouse livers (CYPIA) showed
that these induced isozymes possessed
much higher levels of activity toward the
organophosphates fenitrothion, parathion,
and methyl parathion than did the P450
fractions purified from untreated mice,
thus suggesting the importance of these
P450 families in pesticide metabolism. In
addition to the high level of activity, the
isozymes produced different ratios of oxon
(activation) to phenol (detoxication), with
CYP2B forming more of the activation
product than CYPIA. Similar differences
in activation to detoxication ratios were
found in P450 fractions from the unin-
duced livers. Thus the amount of toxic
metabolite formed would be a function of
the isozyme composition of the animal.

Studies with phorate using microsomal
preparations (49,50) showed very high
levels of phorate sulfoxidation in microso-
mal preparations from phenobarbital-
induced mouse livers (primarily CYP2B)
compared to untreated or acetone-induced
mouse livers (induction of constitutive
CYP2E), thus supporting the importance
of the inducible CYP2B forms in pesticide
(xenobiotic) oxidations.

Recently Rose et al. (unpublished data)
have determined the activity of human
liver microsomes and some expressed
human P450 isoforms toward pesticides.
The activity of human liver microsomes
toward ethoxyresorufin, phorate, and
parathion was about 10% of the activity of
mouse liver microsomes toward these same
substrates, although hydroxylation of
p-nitrophenol was similar for both species.
The human isoforms were expressed either
in human lymphoblastoid cell lines
(Gentest Corp., Woburn, MA) or, in the
case of those from the P4502C family, in
yeast by J. A. Goldstein. P450s 1A2, 2E1,
3A4 and members of the 2C family are
all capable of metabolizing phorate to
phorate sulfoxide, although activity varies
considerably between isoforms.

Although parathion was metabolized by
human liver microsomes in a reaction
requiring reduced nicotinamide adenine

dinucleotide phosphate (NADPH), the
expected product, paraoxon, was not
observed; only p-nitrophenol was detected.
Further studies revealed that paraoxon, on
incubation with human liver microsomes,
with or without NADPH, was rapidly
hydrolyzed to p-nitrophenol by microso-
mal esterases, suggesting that paraoxon
formed by the P450-mediated oxidative
desulfuration of parathion is immediately
hydrolyzed to p-nitrophenol. This result
emphasizes the potential importance, in
organophosphate poisoning, of the small
amount of oxon formed at the site of
action (51) compared to the larger amount
formed in the liver that may never reach
the site of action.

Expression of Pesticide-
metabolizing Enzymes
Pesticdes as Inducers
A number of studies have provided evidence
for induction of liver enzymes in humans
exposed occupationally or environmentally
to pesticides based on half-life of aminopy-
rene or phenylbutazone or excretion of 6p-
hydroxycortisol (52-56). Numerous early
experiments with laboratory rodents
confirmed hepatic enzyme induction (7),
although at the time, methods were not
available for identification of individual
isozymes. Generally, induction of microso-
mal enzyme activities were assessed either
in vivo or in vitro and the pesticide was
often classified a phenobarbital, a 3-methyl-
cholanthrene, or a mixed-type inducer.

1,1,1- Trichloro-2,2-bis(p -ehloro-
phenyl)ethane (DDT). Work by Abernathy
et al. (57,58) demonstrated significant
decreases in zoxazolamine paralysis time,
hexobarbital sleeping time, and aniline
hydroxylase activity in mice following
treatment with DDT or DDE, a major
metabolite of DDT and an important
contaminant of animal fat.

Mirex and Chlordecone. Previous
studies in our laboratory (59) demon-
strated the induction of CYP2B1O protein
and associated enzymatic activities by acute

exposure to both mirex and chlordecone
(Kepone). Subsequently Adams et al.
(unpublished data) showed that chronic
low-level dermal application of mirex also
induced CYP2B1O in mouse liver. The
enzymatic activities measured in these
studies suggested that, in addition to 2B10,
other P450(s) were induced. We have
recently demonstrated the induction of
two P450s in addition to 2B10, namely
1A2 and 3A. It is of interest that 1A2 and

3A forms are constitutively expressed in
both human and mouse liver. Since CYP
3A3/4 is one of the major forms in human
liver and is involved in steroid hydroxyla-
tion, we have initiated studies in conjunc-
tion with G. LeBlanc to determine the
effect of mirex induction on testosterone
hydroxylation in both male and female
mice. These studies reveal a significant
increase in the total amount of hydroxy-
lated metabolites produced and also in the
relative amounts of several products within
that total, with male mice being more
affected than female. This increased metab-
olism of testosterone is accompanied by a
decrease in circulating le-vels of serum
testosterone. Exactly what the implications
are for this alteration in hormone levels is
still to be determined.

Methylenedioxyphenyl Compounds.
Piperonyl butoxide (PBO) and sesamex
(SES) have been used as synergists with
pyrethroid and carbamate pesticides, and
isosafrole (ISO) and safrole (SAF) are
found in many common foods of plant ori-
gin, with SAF having been shown to be a
liver carcinogen in rodents at high doses.
Methylenedioxyphenyl (MDP) com-
pounds affect multiple enzyme pathways
(60,61), including the P450 monooxyge-
nase system. The effect of MDP com-
pounds on P450 activity is biphasic, with
an initial inhibition of activity followed by
an increase above control levels (50,62,63).
The inhibitory effect of MDP compounds
has been attributed to the formation of a
stable inhibitory metabolite complex
between the heme iron of the P450 and the
carbene species formed when water is
cleaved from the hydroxylated methylene
carbon of the MDP compound (64).
MDP exposure induces several P450
isozymes not found in detectable quantities
in unexposed animals (65-68).

Several studies have been published
regarding the effects of MDP compounds
on mammalian liver enzymes [for review,
see (68)]. Cook and Hodgson (69) showed
that ISO increased the level ofAh receptor
in mice but did not displace receptor-
bound 3-methylcholanthrene (3MC) or
2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), both of which interact with the
Ah receptor to induce P450s. Cook and
Hodgson (70) also demonstrated that there
was comparable induction of P450 in a
congenic strain of C57 mice which lacked
a functional Ah receptor and in Ah recep-
tor proficient C57 mice. MDP compounds
have been reported to induce P450 isozymes
CYP1A2 and CYP2B10 in the mouse
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(65). Some investigators have reported that
CYPlAI is also induced in mice by MDP
compounds (71). In induction studies in
rats using 4-n-alkyl MDPs, the length of
the alkyl side chain affected which P450
isozymes were preferentially induced, with
the six-carbon side chains favoring 2B 1; the
rat P450 was most similar to mouse 2B 10
(71). In another study, MDP compounds
with electron-donating side chains were
reported to be P450 inducers while MDP
compounds with electron withdrawing
groups were not (72).

Regulation of cytochrome P450 iso-
zymes lAl, 1A2, and 2B10 by MDP com-
pounds was studied in our laboratory by
measuring mRNA and protein levels, as
well as enzyme activities in hepatic tissue,
from C57BL/6 (Ah+) and DBA/2 (Ah-)
mice dosed with ISO or PBO (66-68).
Increases in 1A2 and 2B10 were observed
for ISO and PBO in both stains of mice,
suggesting an Ah receptor-independent
mechanism for induction of these iso-
zymes; lAI induction, however, was seen
only in C57 mice and only at high doses of
PBO. Dose-response studies showed maxi-
mum inducible levels for 1A2 and 2B10
protein, beyond which the mRNAs contin-
ued to increase while the protein levels
remained constant.

Further studies of the induction of the
P450 isozymes lAl, 1A2, and 2B10 were
carried out (66-68) using four MDP com-
pounds (SAF, ISO, PBO, and SES) and
the non-methylenedioxyphenyl analog of
SAF, allyl benzene, in male C57BL/6N
mice. CYPlAl was not detected in control
animals and was induced by SES and PBO,
with SES inducing higher levels of lAl
protein than PBO. CYP1A2 mRNA was
detected in the livers of control animals
and was increased by all MDP compounds
(SES > PBO ISO > SAF). Allyl benzene
treatment did not induce detectable levels
of lAI, 1A2, or 2B10, suggesting that
the methylenedioxy moiety is important
in induction.

Recent studies (73), using the closely
related benzodioxoles 5-t-butyl-1,3-benzo-
dioxole; 5-n-butyl-1,3-benzodioxole; and
5-(3-oxobutyl)-1,3-benzodioxole, have fur-
ther defined the involvement of this class
of compounds in the regulation of P450
isozymes, confirming that even in the Ah+
C57BL/6 strain of mice, none of these
compounds induced CYPlAI. All three
benzodioxoles induced protein and mRNA
message for CYPIA2, while the t-butyl ana-
log also induced both protein and message
for CYP2B10.

Thus all of the studies of the effects of
methylenedioxyphenyl compounds on
cytochrome P450 in mice suggest that
CYP1A2 can be induced by a non-Ah
receptor-dependent mechanism as well as
by an Ah-dependent mechanism. This is
currently being explored.

Tridiphane. The herbicide synergist
tridiphane [2-(3,5-dichlorophenyl)-2-
(2,2,2-trichloroethyl) oxirane] is a post-
emergent herbicide used in conjunction
with atrazine, its activity being attributed
to its ability to inhibit glutathione S-trans-
ferases. Tridiphane is also known to be a
peroxisome proliferator and to induce
epoxide hydrolase in rodents (74).

Tridiphane is an excellent example of a
pesticide that can function both as an
inhibitor and an inducer of cytochrome
P450, with different isozymes specificities
for each activity. Induction of CYP4A pro-
tein and associated enzyme activity has
been demonstrated (75). The CYP4A
enzymes are constitutive proteins known to
be involved in the oi-hydroxylation of
medium- and long-chain fatty acids. The
importance of peroxisome proliferation in
human health has yet to be clearly defined
because many aspects of this phenomenon
appear to be rodent specific. Nevertheless,
until the effect has been defined, it is not
something that should be ignored.

Endogenous Effets
Many studies have demonstrated that the
oxidation of xenobiotics, including pesti-
cides, can be affected by both endogenous
and exogenous factors. Endogenous factors
include species, strain, age, gender, and
hormonal status while the exogenous fac-
tors include such factors as stress and diet.
Most of these studies have been carried out
on reactions mediated by the cytochrome
P450-dependent monooxygenase system
and, in the case of pesticides, have seldom
been carried out on individual isoforms
either at the level of protein or mRNA
expression. Virtually nothing is known of
the role of exogenous or endogenous factors
on the metabolism of pesticides by FMO.

Gender Effects. Recently (76) we have
examined the role of gender in the expres-
sion of FMO isoforms in mouse liver.
While it has long been known that the
FMO activity toward several substrates was
higher in the liver of female than of male
mice, these studies were carried out at the
level of substrate oxidation and before it
was known that several different isoforms
of FMO exist in mammals. Hepatic FMO
activity of microsomes from adult CD-1,

Swiss-Webster, C57BL/6, and DBA/2
mice was found, in all cases, to be
significantly higher in females than in
males. Based on protein and mRNA levels
in CD-I mice, it was shown that the iso-
forms responsible for this difference were
FMO1 and FMO3; FMO5 was the same
in the livers of mice of either gender.
FMO1 was 2 to 3 times higher in female
liver than in male liver while FMO3,
expressed at levels similar to those of
FMO1 in females, was not detected in the
liver of males. There was close correlation
between protein levels and mRNA levels in
each case. Thus, in mouse liver there is a
gender-independent isoform (FMO5), a
gender-dependent isoform (FMO1), and a
gender-specific isoform (FMO3). Neither
FMO2 nor FMO4 was detected in the
liver of mice or either gender. This effect,
while dramatic, is tissue dependent.
FMO1, FMO3, and FMO5 are expressed
at similar levels in the lung and kidney of
CD-I mice of both genders.

Pesticides as Inhibitors
There are several mechanisms by which
pesticides may act to inhibit P450 enzymes:
competitive inhibition, whereby the pesti-
cide competes with the substrate at the
active site, thus preventing substrate bind-
ing (the pesticide may or may not also be a
substrate); noncompetitive inhibition in
which the pesticide binds to the enzyme in
such a way as to alter the activity of the
enzyme toward its substrate; and suicide
inhibition, whereby the pesticide is metabo-
lized by the enzyme and a metabolite of the
pesticide binds to the enzyme, irreversibly
inhibiting its activity.

As mentioned earlier, MDP compounds
have very complex interactions with the
P450 system (50,60-73). Since MDP com-
pounds are substrates for P450 enzymes,
they may act initially as competitive
inhibitors. In vitro with microsomal sys-
tems, this interaction is manifested as a
type I binding spectrum with a peak at 390
nm and a trough at 420 nm. As the MDP
compound is metabolized, it becomes a
suicide inhibitor, which as a reactive meta-
bolite (probably a carbene) forms a stable
inhibitory complex with the heme iron of
P450. It is this latter characteristic that is
responsible for the synergistic activity of
these compounds, most notably piperonyl
butoxide, in pesticide formulations.

As noted above, the herbicide synergist
tridiphane is a postemergent herbicide,
and its activity is attributed to its ability
to inhibit glutathione S-transferases.
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Tridiphane has been shown to induce per-
oxisome proliferation, epoxide hydrolase
(74), and P450 (75) in rodents. In addi-
tion to induction of CYP4A, tridiphane
functions as a selective P450 inhibitor,
inhibiting CYP2B10 while having little or
no effect on other P450 isozymes (77). As
assessed by in vitro studies, tridiphane
appears to be a competitive inhibitor of the
P450 enzymes; its effect in vivo, however,
is not yet known.

Organophosphorus insecticides such as
parathion that contain the P = S moiety are
metabolized by the P450 system to the
corresponding oxon, P = 0, by oxidative
desulfuration. This activation reaction,
which converts the relatively inactive com-
pound to a potent cholinesterase inhibitor,
is thought to involve the formation of a
P-S-O (phosphooxythirane) ring interme-
diate. Studies with both microsomes and
purified enzymes (78-80) have demon-
strated that, during oxidatiye desulfura-
tion, the released sulfur exists as a highly
reactive molecule which then binds to
P450, inactiviting the enzyme. This bind-
ing of reactive sulfur to P450 is accom-
panied by loss of P450 as detected by
measurement of the dithionite-reduced
CO complex as well as loss of monooxyge-
nase activity (81-84). Studies in our labo-
ratory with purified P450s and the
pesticide fenitrothion demonstrated that
the amount of inhibition varied with
the P450 isozyme, with CYP2B being
inhibited more than CYPlA (48).

Pesticides in Complex
Multienzyme Pathways
General Approach
While P450 and FMO have many sub-
strates in common, the products of these
substrates may be different and have differ-
ent toxic potencies. Thus, it is important
to know the relative contribution of the
two pathways to the metabolism of a par-
ticular substrate. Furthermore, in contrast
to FMO isozymes, xenobiotic-metabolizing
isozymes of P450 are often relatively easily
induced, thus making the relative contri-
butions variable with the conditions of
exposure. Although it is said that the FMO
prefers soft nucleophiles as substrates and
P450 hard nucleophiles, with the exception
of compounds oxidized at carbon atoms,
this applies only to the relative ability of
compounds to serve as substrates for one or
the other because it is difficult to find
FMO substrates that are not also substrates
for one or more P450 isozymes.

Such substrates may have complex oxi-
dation patterns involving both FMO and
P450 isozymes and show different regio-
selectivity in the sites on the molecule
attacked. As a result, these substrates may
yield different products or different iso-
mers of the same product. A number of
methods are available for determining the
relative contributions of FMO and P450
including extrapolation from the properties
of purified enzymes (or from isozymes
cloned and expressed in expression systems),
the use of product-specific substrates, the
use of enzyme-specific substrates, or the
manipulation of microsomes in which both
enzymes are found. This latter technique,
using heat treatment to inactivate FMO or
an antibody to the NADPH-P450 reduc-
tase to inactivate P450, has proven most
useful in our hands, particularly in the case
of hepatic enzymes (42,49,50,85). At least
one of the FMO forms found in the lung
and kidney is resistant to thermal interac-
tion. This form, however, is not expressed
in liver.

Phorate. The insecticide phorate
undergoes a complex series of oxidations.
The products are generally more toxic
than phorate and the reaction sequence is,
therefore, an activation sequence. This
substrate has proven to be useful in exam-
ining the relationship between FMO and
P450 activity.
FMO forms only one product, phorate

sulfoxide, while P450 yields phorate
sulfoxide as well as additional products.
Moreover, the sulfoxidation reaction is
stereospecific with FMO producing the
(-) sulfoxide and several P450 isozymes the
(+) sulfoxide. While both sulfoxide isomers
are substrates for further metabolism by all
P450 isozymes tested, the (+) sulfoxide is
always preferred to the (-) sulfoxide (45).
The relative contribution of FMO to
sulfoxide formation is higher in female
than in male mice, in agreement with
the studies of gender effects described
above. Although overall sulfoxide forma-
tion is higher in the liver than in any extra-
hepatic tissue, the contribution of the
FMO relative to P450 is higher in lung,
kidney, and skin-being as high as 90% of
the total metabolism in renal microsomes
from the female mice. By contrast in the
liver, P450 is responsible for more of
the phorate sulfoxidation (-50-70%,
depending upon the gender). Furthermore,
the contribution of P450 relative to FMO
is increased following treatment in vivo
with inducers of hepatic P450 such as
phenobarbital (49,50).

Target Tissues
Nervous System. Initial studies in this area
in our laboratory involved the antipsy-
chotic drug thioridazine (TDZ). They are
currently being extended to include pesti-
cide substrates. Many drugs, including
antipsychotics, monoamine oxidase
inhibitors, and antihistamines, are sub-
strates for the FMO; TDZ is an excellent
substrate for examining the relative impor-
tance of different oxidative pathways
because it is oxidized at multiple sites by
both FMO and P450.

Based primarily on examination of uri-
nary and serum metabolite profiles, S-oxi-
dation appears to be the predominant
route of TDZ, metabolism in humans by
producing the 2-sulfoxide, the 2-sulfone,
and the 5-sulfoxide. The 2-sulfoxide and
the 2-sulfone are known to have greater
antipsychotic activity than the parent com-
pound, while the ring sulfoxides may be
responsible for the cardiotoxic side effects
sometimes seen with TDZ [see Hodgson
et al. (4,5) for review].

Metabolism by hepatic microsomes
from the mouse yielded primarily the
2-sulfoxide of TDZ, with significant
amounts of the 5-sulfoxide, the N-oxide,
the N-demethyl derivative, and the 2-sul-
foxide-N-oxide (86). Heat treatment of
microsomes to selectively destroy the FMO
activity or treatment with an antibody to
the NADPH-cytochrome P450 reductase
to inhibit P450 isozymes revealed that the
N-oxide was the principal metabolite
derived from the FMO, while the 2-sulfox-
ide and the other products were derived
primarily from one or more isozymes of
cytochrome P450.

Studies using FMO purified from
mouse liver have shown the N-oxide of
TDZ to be the principal and perhaps the
only product of TDZ metabolism by
this enzyme. Similar experiments using
P4502D6 revealed that the 2-sulfoxide of
TDZ (mesoridazine) is the principal but
not the only metabolite of TDZ with this
P450 isozyme. Similar experiments have
been carried out with P450 isozymes 2E1
and 2B1.

The possible occurrence and role of
FMO in the nervous system appears to be
important not only because TDZ and
several of its metabolites have similar
biological properties and activation within
the target tissue may be significant but
also because the FMO has been shown to
activitate phosphonates by metabolism
to their oxons (43,87,88) and to carry out
the sulfoxidation of phorate and other
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insecticides. Previous studies from other
laboratories that indicate the possible
occurrence of the FMO in rat corpus stria-
tum and whole brain microsomes could
not be duplicated. Studies in our labora-
tory, using microsomes prepared from
mouse brain, of substrate level oxidations
and western blotting with an antibody to a
form of FMO purified from mouse liver,
while not negative, were equivocal. To
determine the presence ofFMO mRNA in
rabbit brain, we, in conjunction with R.M.
Philpot, have recently used PCR techniques
to demonstrate FMO in the nervous system
of the rabbit (Blake et al., unpublished
data). Recently, five forms of FMO (forms
1 through 5) have been identified in rabbit
hepatic and extrahepatic tissues (89-91),
with most tissues expressing more than one
form. PCR amplification ofcDNA was per-
formed using primers specific for each of
the five forms ofFMO found in rabbit tis-
sues. These data suggest that only one form,
apparently FMO4, is expressed in rabbit
brain. The cDNA for this FMO has been
cloned and sequenced from a human liver
cDNA library (92).

The substrate specificity of FMO4 has
not been determined. If it is a metaboli-
cally active protein, the inability to detect
its presence in brain is probably due to its
localization in certain brain regions or cell
types. Studies are in progress to confirm
the presence of FMO4 message in brain
and to use immunocytochemical and in
situ hybridization techniques to localize the
isozyme in the brain.

Portals of Entiy
Skin. Because the skin is continuous over
the large surface area of the body and is in
direct contact with the environment, it is
often the portal of entry for pesticides and
other environmental contaminants, as well
as the site of transdermal absorption of clin-
ical drugs. Thus, knowledge of the enzymes
involved in xenobiotic metabolism by skin
is important for understanding mechanisms
of toxicity and for developing more realistic
risk assessment models (93). The skin is
known to contain many of the xenobiotic
metabolizing enzymes found in the liver,
including P450, transferases, esterases, and
epoxide hydrolase (94-98). Moreover,
P450 activity in skin has been shown to be
induced by polycyclic aromatic hydrocar-
bons such as 3-methylcholanthrene and
other xenobiotics (99-103).
We have recently studied pesticide

substrates in mouse skin (44). In these
studies the roles of P450 and FMO were

studied in skin microsomes and compared
to those in liver. The P450 content of skin
was approximately 6.8% of the liver P450
content. By comparison, NADPH-cyto-
chrome c reductase activity in skin micro-
somes was high-approximately one-third
of the liver microsomal enzyme activity.
Skin microsomes metabolized several
known P450 substrates and, depending
upon the substrate used, the specific activ-
ity ranged from 2.5 to 13.4% of the corre-
sponding rates seen in liver microsomes.
Skin microsomes exhibited the highest
enzymatic activity with benzo[a]pyrene
and ethoxyresorufin, moderate activity
with parathion and aldrin, and low activity
with benzphetamine and ethoxycoumarin.
Skin microsomes also metabolized the tri-
azine herbicides atrazine, simazine, and
terbutryn, with the activity being 2 to 5%
of the liver microsomal activity. FMO
activity in skin microsomes with thioben-
zamide and methimazole as substrates
ranged from 10 to 20% of the liver FMO
activity. Immunohistochemical studies
using antibodies to mouse liver FMO
showed localization primarily in the epi-
dermis. Additional studies using pig skin
showed a similar distribution pattern.
Antibodies developed to mouse liver FMO
and the constitutive liver P450 isozyme
CYP1A2 showed cross-reactivity on
Western blots; proteins in skin microsomes
appeared identical to the cross-reacting
protein present in liver microsomes. The
relative contribution of P450 and FMO in
mouse skin to the sulfoxidation of phorate
was investigated and compared to that of
liver microsomes. Several procedures were
employed to selectively inhibit either P450
or FMO so that the role of each monooxy-
genase system, in the absence of the other
system, could be determined. As in the
lung and kidney, FMO in the skin proved
to be relatively more important than P450
for the sulfoxidation of phorate. In liver
microsomes, P450 was responsible for 68
to 85% of the phorate sulfoxidation activ-
ity. In contrast in skin microsomes, 66 to
69% of the phorate sulfoxidation activity
was due to FMO, while P450 was respon-
sible for the remainder of the activity.
Although the overall phorate sulfoxidation
rate in mouse skin microsomes was only 3
to 4% of the rate seen in liver, FMO
appears to assume a greater role relative to
P450 in the metabolic processes in skin.

While microsomal systems isolated from
skin have provided useful information on
skin biotransformation, there has been a
need for more useful experimental models

to examine cutaneous metabolism. The iso-
lated perfused porcine skin flap (IPPSF) has
been shown to represent a viable, fully
functional, and predictive in vitro model
system (104,105). Drugs, pesticides, and
other xenobiotics that are applied topically
to the IPPSF diffuse through the layers of
the skin, and the chemical and its metabo-
lites are taken up by the microcirculation,
which closely mimics in vivo conditions. In
addition, the test chemical may be admin-
istered intra-arterially to examine the fate
of chemicals that distribute to the skin
from the systemic circulation. We have
used this model to study the metabolism
and disposition of topically applied
parathion (105). Parathion was applied to
the surface of skin flaps representing three
treatment groups: control, occluded, and
1-aminobenzotriazole (ABT)-pretreated.
Radiolabel uptake in the perfusion
medium indicated that total chemical flux
and peak rates of absorption in occluded
preparations were 59% and 47% lower
than in controls, respectively, and both
were > 75% lower in the ABT flaps. Most
of the absorbed radiolabel recovered in the
perfusion medium of the control group
was paraoxon (68%); there was a lesser
amount of p-nitrophenol (15%), and the
remainder was unmetabolized parathion.
Occlusion of the application site increased
the fraction ofp-nitrophenol (43%) to that
of paraoxon (40%) without altering the
parent compound recovered. Pretreatment
of the IPPSF with ABT (an inhibitor of
P450) blocked most of the paraoxon forma-
tion (7%) but not that of p-nitrophenol
(12%), while allowing 78% of the para-
thion absorbed to penetrate intact. These
findings show that parathion undergoes
significant biotransformation following top-
ical application to porcine skin and that the
resultant cutaneous metabolite profiles can
be altered by both physical (occlusion) and
chemical (ABT) means.

As indicated above in the case of mirex,
pesticides passing through the skin can also
be shown to affect the expression of P450
isozymes in the liver.

Studies in the laboratory of Mary Beth
Genter (personal communication) using
immunohistochemical methods have
revealed that at least two isozymes of the
FMO are present in the olfactory epithe-
lium. FMO3 is broadly distributed while
FMO 1 has a more restricted distribution.

Future Studies
It appears clear that future epidemiology
studies on the effects of pesticides on
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human health must be more extensive if
significance is to be properly assessed.
Companion toxicological studies will be
necessary to provide a mechanistic basis for
the correlations observed. Similarly, expo-
sure assessment will need to be continued.
In both cases, the occupationally exposed
provide a useful pool to yield initial insights
before the much more intractable problem
of the general population is addressed.

The interactions of pesticides with
P450, FMO, and other Phase I and Phase
II enzymes have been studied for some

time; however, isozyme specificity for
metabolism, induction, and inhibition is
still little understood. If toxicology is to
serve the public interest by carrying out the
kinds of studies that protect public health
but, at the same time, allow efficient vector
control and the production of food and
fiber, a more holistic approach will be nec-
essary. It is not sufficient to know whether
an agricultural chemical is a substrate for
microsomal oxidation. A number of other
questions must be addressed: What are the
specific enzymes and isoforms involved? Is

the reaction an activation or a detoxication
reaction? Does induction or inhibition
occur? What is the relationship to other
Phase I and Phase II enzymes? How are
these relationships changed by other xeno-
biotics? What interactions occur at portals
of entry and sites of toxic action? Can this
information be integrated into risk assess-
ments and provide a mechanistic rationale
for epidemiological studies? Only with this
type of fundamental information can
applied problems in the field be addressed.
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